Biomethane Quality & distribution

Peter Beumers
Product Management Dep.
Alliander

CEDEC Gas Day
18 februari 2013
Overview

Biomethane ambitions and market

Growth biomethane volume and facilitating growth

Gas grid and gas quality and standards
Biomethane

- Biomethane
 - Upgrading of biogas from anaerobic digestion of wet biomass.
 - Gasification of solid dry biomass.
 - Plant size 20Nm3/hr – 10000Nm3/hr
- Quality of gas fit for public distribution

Gasquality
- Different gas quality standards in EU countries
- Biogas from sources such as sewage sludge and industrial waste is forbidden in some countries
- EU standardization on Nat Gas & Bio methane
Biomethane ambition & market

Ambitions

• Biomethane could deliver more than a third of Europe’s natural gas production or around 10% of the European consumption

• Ambitions Countries: increase production with subsidy schemes, first CHP more & more Biomethane

Economics

• Side effect: Increase in biomass prices

• Biomethane business case competes with CHP and BioLNG

• 40-60 Cts cost of production Nm3

• No subsidy, no biomethane

<table>
<thead>
<tr>
<th>Country</th>
<th>Biomethane plants</th>
<th>Biomethane plants feeding the grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Croatia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>France</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Germany</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Hungary</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Italy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Netherlands</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Poland</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slovakia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UK</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sweden</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Switzerland</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>
Biomethane ambition & market

Market
Search for feasible business cases
Winning cases
- Organic Waste households
- Organic waste food-industry
- Manure + waste streams
- Production Green Gas + CNG or LBG for transport + CO2

Technical Developments
- Manure digestion on micro scale (20m3-60 m3 hour), farm scale (200 cows)
- Upscaling: Biogas hubs + larger plants
- Upgrading technologies (cryogenic)
- Biogas hubs: separate biogas grid with central upgrading unit to create biomethane
Feed in: for example Max 1200 M3/hr. (small City)
Agricultural area’s much lower.
Average size plant ca. 300-400 m3/hr.
Feed-in capacity is limited, often one or two per Gate Station grid
Growth biomethane volume

DSO Grid: View on current Grid structure
DSO Grid and growth injection: View on current Grid structure
Make a Scenario Analysis

Will yearly growth of volume with subsidy scheme fit with current infrastructure in place? (connecting feed-in on current grid)

Capacity is limited in area’s where production of biomethane is foreseen (agricultural area’s)

EU wide same cap. limitation expected, withholding growth of biomethane feed-in
Facilitating Growth: Compression & central upgrading

Biogashub

To facilitate compression in time is needed (10% of current demand substitution with biomethane)

But first:
- Can you create more local demand?
- Is a biogashub more cost efficient?
Gas: New sources will be introduced

- As a DSO you will receive a specific type or blend of gas, depending on geographical area.
- Quality Gas: Complies with National Standards (bandwidth wobbe).
- For Power to Gas: Also feed-in in local DSO grid.
Facilitating Growth: A new business model for the DSO Resulting in a Smart Gas Grid

New DSO tasks:
- Gas Mixing, Upgrading, Treatment
- Compression, Storage
- Dynamic Pressure Management
- Quality monitoring

\(Q = \) a gas with a specific quality
Handling Quality Change: Composition changes at end-user locations

- **Single direction section**
 (all see the same changes, but at different moments)

 ![Diagram of gas flow](image)

 - **Frontal flow encounter**
 (your quality depends on where you are and what all parties do)
But what about the gas quality?
DSO perspective

Introduction wider Wobbe band in EU
- Gas received from TSO: LNG terminal, International connections
- Local production of Biomethane (also TSO)
- Introduction upstream operability (compression TSO (16 bar higher grid))
- Local production of SNG (TSO?)

Gas quality treatment: Interchangeability DSO grid and upstream (Different gas qualities?)
- Biomethane: Wobbe setpoint
- Methane number higher than >100 (AVL 3.2) vs 70?
- Calorific value
- Alignment Gas quality DSO/TSO and local injection
Simulation: Gasnet Texel (MPC)

- **8201 users**
 - 254 stations/streets
 - 193 loops (6 big loops)

- 100mbar

MPC
Model Predictive Control (impact 8-24-48 uur)

Map

- High use 1
- High use 2
- High use 3
- Loop 1
- Loop 2
- Loop 3
- Loop 4
- Loop 5
- Loop 6

Graph

- dagpatronen Texel GOS

Bar Graph

- [Graph Details]

Additional Text

- Impact 8-24-48 uur
Product liability:
Where is the product you distribute?

Flow calculated:
path of lowest resistance

flow results 10 minutes (yellow) in 50 minutes
Gasquality roles: old and new parties fullfilling a (new) gasquality role

- The (Professional) Producer: Exit = entry or blending specs? DSO as a contractor on gasquality & monitor
- The DSO: Quality improvement, propane addition (right calorific value), : Role as a producer, caloric value & quality measurement
- DSO legal: product liability, safety, more producers within one area, monitoring gasquality 24/24h: Role as a productowner
- The TSO and DSO: Pressure settings, Quality upstream, downstream:
- Role as a producer (quality treatment)

<table>
<thead>
<tr>
<th>New activities for a DSO?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Measurement (calorific value)</td>
</tr>
<tr>
<td>Volume measurement</td>
</tr>
<tr>
<td>Quality improvement: Propane addition</td>
</tr>
<tr>
<td>24/24 hr monitoring Quality</td>
</tr>
<tr>
<td>Odorant Injection</td>
</tr>
<tr>
<td>Quality Control</td>
</tr>
<tr>
<td>Pressure control</td>
</tr>
<tr>
<td>Transport (compression)</td>
</tr>
<tr>
<td>Transport (flow) More producers within one distribution area, Prioritization Producers</td>
</tr>
</tbody>
</table>
Gas quality & roles:
24 h monitoring gas quality

<table>
<thead>
<tr>
<th>Main Properties</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorific Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wobbe-index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water dew point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odorant pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume/flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³(n)/h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gas quality & roles

Specs for LNG ≠ Storage ≠ Bio methane ≠ Power plants ≠ large users ≠ small user ≠ CNG
Right quality right purposes

Right specs for LNG ≠ Storage ≠ Bio methane ≠ Power plants ≠ large users ≠ small user ≠ CNG

For GAD and Non GAD Appliances

Normalisation on gas quality:

- Gas in TSO/Nat Gas
 - Natural Gas
 - CEN/TC 234/WG11
 - Gas infrastructure

- Gas in TSO/DSO network
 - Biomethane CEN/TC 408

- Biomethanev for NGV/CNG
 - DSO conn.
 - 408 CNG from public grid connection
 - No grid conn.
 - 408 CNG from biogasplant

- Natural Gas 234/Wg11
- +
- Natural Gas 234/Wg11

Migration of current and new appliances to handle a new wider Wobbe bandwidth
Gasquality Biomethane

Natural gas (234/WG11)
- Wobbe Index
- Higher Heating Value
- Relative density
- Methane number
- CO2
- Temperature
- Hydrocarbon dewpoint
- Water content
- Water dew point
- Oxygen
- COS
- H2S
- S total
- Hydrocarbons dew point
- Dust Impurities
- Mercaptan

+ Biomethane specific (408)
- Wobbe Index (setpoint)
- Higher Heating Value (propane addition)
- Methane number (>100) (jump)
- Temperature (feed in point) (steel, PE)
- Sulfur total (Odorisation)
- Silicon (issue)
 (aligned with local nat gas spec)

+ Gassification
- Benzene
- Carbon monoxide

CNG
- Methane number
- Water dew point (200 Bars)
- Silicon
- Total Sulfur: Desulphirisation?

Drafts: First quarter 2013
Siloxanes

5 ppm D5 Siloxanes effect

Heat exchanger effect
(siloxanes 5 ppm D5)
Methane number

Methane number: > 85 (Avl 3.2), minimum of stationary gas engines, speed of change 0.3 MN/s; Possible solutions: Forecast, only TSO grid

CAT:
Big fast changes are a serious problem for all current engines. trade-off between:
 • Tolerance to gas composition change
 • Efficiency
 • Reliability
 • Stability of Engine Load or

Engine speed
 • Investment
 • Emissions
Speed of change Methane Number

Variation speed in methane number per G-gas region, 2011 - May 2012

MN variation in 15 minutes, maximum realised : 3.1 in 15' (AVL list)

TSO, what about the DSO situation with biomethane feed-in?
Quality change is a current ongoing process, installations can handle a specific bandwidth, with additional extra safety margins.
Summary

Change in quality: EU Standard
• Migration of current and new appliances to handle a new and wider Wobbe bandwidth

New Gases entering the network
• A ‘blend’ of gases will be distributed

New DSO tasks:
• Gas Mixing, Upgrading, Treatment
• Compression, Storage
• Dynamic Pressure Management
• Quality monitoring

Product Liability
• You have to know exactly what is and has been distributed.

Is the regulatory framework in place to fullfill these new tasks?
Are the TSO’s and DSO’s aligned (gasquality, roles) ?
Do TSO and DSO’s work together towards one goal ?
Questions?
To help create a better society in the regions in which we operate and to contribute to social and economic growth.
Contact

Peter Beumers

Productmanagement
M +31 6 21880584
E peter.beumers@alliander.com

Liander N.V. . Postbus 50, 6920 AB, Duiven, Netherlands . Locationcode: 2PB4100